Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 , e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 , e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 , e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 , e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 , e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 , e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div$ $(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div$ $(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div$ $(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div$ (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div$ $(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div$ (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div$ $(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) $\div$ (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div$ $(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?

Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

Solve real-world and mathematical problems involving the four operations with rational numbers.

Solve real-world and mathematical problems involving the four operations with rational numbers.

Solve real-world and mathematical problems involving the four operations with rational numbers.

Solve real-world and mathematical problems involving the four operations with rational numbers.

Solve real-world and mathematical problems involving the four operations with rational numbers.

Solve real-world and mathematical problems involving the four operations with rational numbers.

Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

